Answer:
Option B
Explanation:
Angular width of differaction pattern=60°
For first minima,
$\frac{a}{2}\sin\theta=\frac{\lambda}{2}$, [ here,a=10-6m, θ=30°]
$\Rightarrow\lambda=10^{-6}\times \sin30^{0}\Rightarrow\lambda=\frac{10^{-6}}{2}m$
Now, in case of interference caused by bringing second slit,
$\therefore$ Fringe width, $\beta=\frac{\lambda D}{d}$
[ here,
$\lambda =\frac{10^{-6}}{2}m , \beta =1cm=\frac{1}{100}m,
d=?,and D=50cm=\frac{50}{100}m$ ]
So, $d=\frac{\lambda D}{\beta}=\frac{10^{-6}\times 50}{2\times \frac{1}{100}\times 100}=25\times 10^{-6}m$
or $d=25\mu m$